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THREE-DIMENSIONAL ANALYSIS OF ELASTIC SOLIDS—I
ANALYSIS PROCEDUREY

Y. R. RasHID

Gulf General Atomic Incorporated, San Diego, California

Abstract—A method of analysis of nonhomogeneous elastic solids involving general three-dimensional states of
stress is presented. The displacement equations of equilibrium based on the finite-element variational procedure
are derived in the usual manner. The element shape considered is a tetrahedron with linear displacement approxi-
mations.

The main feature of this paper is the method of solution of the equilibrium equations. This method, called the
alternating component iterative method, belongs to the class of block iterative schemes and is particularly suited
for problems involving several dependent variables such as the ones encountered in elasticity. The method is
presented in a form sufficiently general to permit the utilization of higher-order displacement approximations in
the tetrahedral elements.

The alternating component iterative method is discussed in detail with respect to the following aspects: the
general procedure, convergence criterion, refinement of the solution, and convergence acceleration procedure.

INTRODUCTION

THE analysis of elastic solids that involve three-dimensional stress fields has been the object
of increasing concern in recent years. The development of the finite-element method as a
new application of variational procedures in elasticity provided an effective tool for the
analysis of a large class of problems in solid mechanics. The literature is quite extensive on
this subject and it would be prohibitive to list all previous contributions [1-14].

In the general application of the finite-element variational methods, the displacement
formulation of the problem is better suited for automatic computation than is the stress or
the mixed formulation. By employing the variational principle of minimum total potential
energy in which the element displacement field is varied consistently with the constraints
on it, the displacement equations of equilibrium of the element are derived. The complete
set of equilibrium equations of the entire system of elements is obtained through the super-
position of the individual element relations.

The use of polynomial functions to express the element displacement patterns has been
the accepted approach to this method of analysis. The choice of the number of terms in
those polynomial functions is governed, with very limited degree of arbitrariness, by the
kinematic characteristics of the element and by admissibility conditions of the displacement
field.

In the present discussion, we are concerned with the computational problem only. To
maintain completeness, however, the equilibrium equations are derived first, following the
standard finite-element variational procedure. We then give a method of solution of the
equilibrium equations {called the alternating component iterative method) and discuss its

T Work supported by Union Carbide Corporation, Nuclear Division, under Subcontract 2848 (Prime Contract
W-7405-eng-26).
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gpplication to the three-dimensional problem at hand. in Part II [15], we deal with the
influence of roundoff on the computed solution and with the convergence properties of the
iterative process.

DISPLACEMENT EQUATIONS OF EQUILIBRIUM

Consider an elastic continuum occupying a region R with boundary X, having dis-
placements u;, strains ¢;;, stresses g;;, and body forces f; in R. The surface tractions S; may
be prescribed over X, and on X, the displacements may be known. If the relations

G = (8kk~»%za?’)léﬁ+2ﬁsij {1}
and
&y = _].(f?ﬁi+%) (2
2\0x;  dx; /
hold in R, and the relation
Si=on; 3)

holds on X, then the principle of minimum potential energy can be defined by the following
formula:

i
5“] gijgii dR = 5 f f,:u,- dR+ f Siu(' dz . (4}
2Jr ) R >

Here

A, u  Lamé’s constants,
v Poisson’s ratio,
o the coefficient of linear thermal expansion,
T the temperature change,

the Kronecker delta, and

n the unit vector normal to the surface.

The above is restricted to isotropic material behavior. If we adopt matrix notation, equations
(1) and {(2), respectively, can be rewritten as

E \ E 5
{6} = m[.ll]({s}-ocT{5})+ﬁ~+—v-)~[Jz]{8} ()

and
{e} = [L1{u}, (6)

where {5}, {¢} and {u} are column vectors whose components, respectively, are stresses oy,
strains g;;, and displacements u;; [L] is a matrix differential operator given in the Appendix ;
E and v are Young’s modulus and Poisson’s ratio, respectively ; [J,] and [J,] are symmetric
matrices given in the Appendix ; and {4} is the Kronecker delta written as a column vector.
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If we write the body forces f; and the surface tractions S; as column vectors { f } and {S},
respectively, and substitute (5) and (6) into (4), we obtain

E T E T
5( f {6(1—2v){8} 711 (e} =2 T{0)) + (el [Jz]{s}} dR

_ L )T f) dR— L{u}T{S} dZ) —0,

where the superscript T indicates the transpose of the quantity in question.t

The only unknown quantity in equation (7) is u, which, through the strain—displacement
relations, gives rise to &. We restrict the vector field u to be continuous and in C! over any
finite subregion AR. Different subregions, designated in the literature as ““finite elements,”
can in general have different material properties and different temperature distributions.

If the body can be sufficiently closely subdivided into a number of such AR’s, then a
displacement field that satisfies the continuity and differentiability conditions stated above
will converge to the limit solution as AR’s go to zero. The shape of each element is arbitrary,
provided the original geometric continuity of the body is preserved.

Our purpose is to express the equilibrium state of each individual subregion AR as a
relation between two generalized force and displacement vectors, defined only for a
particular AR. By means of coordinate transformations these individual relations can be
expressed in a common coordinate system and then superposed to obtain the equilibrium
equations of the entire system.

Consider a typical element AR whose displacements u/{x) can be expressed in terms of
coordinate functions ¢,,(x) and the generalized coordinates b, as follows:

udx) = ¢, (x)b, i=1,23
a=1,2,...,r (8)
If we use matrix notation, equation (8) can be written as
u = @b, 9)

where u is a column vector function of three components, ¢ is a 3 x r rectangular matrix
function, and b is a vector of dimension r. From (2) and (9), the strain-displacement relations
can be written as

€= yb, (106)

where ¥ is defined in the Appendix. Substitution of (9) and (10) into (7) yields

E E
5{6(1_2v)b UR l//TJlt//dR)b+6(l+v)bT(L l//Tlede)b

EaT
3(1—2v)

be wTJI(SdR—be (I)deR—‘be(DTSdZ} = 0. (11)
R R

T To avoid crowded notation we will dispense wherever possible with the use of brackets to identify matrices.
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Upon carrying out the variation in (11) we obtain

B = (k,+ky)b, (12)
where
B:f (I)deR+f orsdz 4T fwTJlédR,
R 3(1_ R
k
1 l_2vflﬂJl11dR (13)
o EIRAL AL

Equation (12) expresses the equilibrium of one element AR in terms of generalized
forces B and the generalized displacements b. In order to make further use of (12) it is neces-
sary to transform this equation to a coordinate system common to all elements. The co-
ordinate transformation that does this depends on the geometry and the deformation
patterns of AR. Of all possible shapes, the tetrahedron seems to offer the best choice from
the point of view of simplicity and its adaptability to irregular geometry.

The deformation field of each tetrahedron AR is expressed as a continuous relation
between the displacements of a finite number of points (nodes) located at the surface of the
tetrahedron and shared by adjacent tetrahedra. The displacements of all the nodes in the
solid together with the individual element relations fully define the displacement field of
the entire solid.

By evaluating equation (9) at the nodes of tetrahedron AR we get

D = q)ob, (14)

in which v is the nodal displacement vector, and @, is a nonsingular matrix (r x r) whose
elements are functions of the coordinates of the nodes. Corresponding to the nodal displace-
ment vector v there exists a nodal force vector f that satisfies the inner product:

JTf = bTB. (15)
In view of (14) and (15),
B=®%f (16)
and
b = @y lv. (17)

Substituting (16) and (17) into (12), we obtain

f = kv, (18)
where
k = (@5 ")k, +k)D5 (19)
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By superposition of equations of type (18) we obtain the equilibrium equations of the
entire solid as follows:

J r
FP =Y Sk I=12..,N, (20)

j=1 j=1t=1

M-~

where the summation is taken on all elements j = 1,2,..., J that contribute to node [,  is
the number of displacement unknowns of each element, and N is the total number of
displacement unknowns. More compactly, equation (20) can be written as

F=KV. (21)

The explicit forms of the individual element relations are given in the Appendix.

SOLUTION OF EQUILIBRIUM EQUATIONS

Methods for solving systems of linear algebraic equations are often divided into direct
and iterative. Combinations of both methods or versions of each method are well-known
techniques [16]. Matrix inversion being excluded as a suitable technique for solving large
systems, two of the most commonly used methods are Gaussian elimination and the over-
relaxation iterative method, sometimes referred to as the accelerated Gauss—Seidel method.
Both techniques are subject to certain limitations that seriously limit their application to
three-dimensional problems. For example, although the point Gauss—Seidel method always
converges for positive definite symmetric matrices (a property of K), its rate of convergence
can be hopelessly small. Whereas point iteration methods may be effective for well-condi-
tioned systems of order 1000 or less arising from two-dimensional analysis, they are not
suited for three-dimensional problems. On the other hand, Gaussian elimination for
symmetric band matrices is restricted to relatively small band widths (of order 400 on a
32,000-word computer) [17]. This is considered too small for three-dimensional problems.

The solution scheme presented here belongs in principle to the general class of block
iterative methods. It resembles such methods in the sense that one deals with iteration on
subvectors and the direct solution of lower order systems; however, it differs from these
methods in certain basic ideas that will become apparent in a later discussion. The method,
called here the alternating component iterative method, is primarily intended for systems
of three or more dependent variables.

The alternating component iterative method
Equation (21) can be written in the following form:

o= 3 Y kjp.glofq) p=12...,n (22)

j=ta=1 i=12,....m
where p is a field point, g is a source point, # is the number of mesh points, m is the number
of dependent variables (components), and i and j refer to the dependent variables. For the

special case where only the displacements are the unknowns, i and j refer to the coordinate
directions 1, 2, and 3. In partitioned form, equation (22) can be written as

F(P) = ¥ KP,OV(Q) i=12...,m. (23)
=1
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In matrix notation, this equation has the form

F,(P) K (P,Q) Ki(P.Q)... K (P.O)] (Vi(Q)
BPY | KulPQ) Ky(PQ)... KynP Q)| | V2(Q)

e : : : - (24
Fm(P) Kml(P’ Q) KmZ(P’ Q) e Kmm(Pa Q) Vm(Q)

In this equation, P and Q denote the complete lists of field and source points, respectively.
The terms F(P), V{(Q), and K,(P, Q) are of order n. The partitioned matrix in (24) is sym-
metric; ie. K;(P, Q) = K;{P, Q)", where T indicates matrix transpose. The subscript m
denotes the number of components; i.e. in the case where the nodal values of displacement
components u,(x), u,(x), and us(x) are the primary unknowns, m = 3.

It should be noted that equations (23) and (24), although sparse, are not, in the form
indicated, band systems. If the list of mesh points P can be partitioned into point groups
P, P,,..., Py, where coupling of one group extends to the two adjacent groups only,
equation (24) can be partitioned further as follows:

F(P) = z Z Kij(PaaQﬂ)Vj(Qp) a=

L2,....M (25)
i=1p=1 i=1,2

In this form, the component matrices K, (P, Q) in equation (24) are biock-tridiagonal ;
ie. K;j(P,, Q4) are null matrices for (x4 1) < f < (x—1). If we dispense temporarily with the
use of the symbols P and Q to identify lists of field and source points, a single-matrix equation
of (24) can be written as

F=Y KjVi+KVi+ Y KV (26)

no summation on i is implied. If we solve for V; from (26), we have

i—1 m
V= KEI[Fi_ > KyVi— X KUVJ]- (27)
=1

j=i+1
Applying the Gauss-Seidel iteration procedure to (27), we obtain

i1 “
et = K,-;1|:Fi_ Z K,-jV}SH)_ Z KijV,(-S):l, (28)
=1

i j=it1

where s refers to the sth cycle in the iteration sequence. Rather than using equation (28) to
evaluate the (s+ 1)th vector iterate, we use the following equation:

V§S+l) — V(is)+wAVS_s+l), (29)
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where w is a positive number between unity and two, referred to in the literature as the
over-relaxation factor, and AV¢*Y js obtained from (28) by subtracting V¥ from both
sides of the equation,

i-1 m

Y Kyetv— % KUVﬁs’] (30)
=1 j=i

AV(is+1) — Ki-i-l[Fim
J
The matrices in equation (30) are of order n that for problems of practical interest exceed
3000. Therefore, equation (30) would seem rather useless since it contains the inverse of a
matrix of order 3000. The explicit inverses of the K;;’s will not be required, however.
Defining a residual load vector

i—-1 m
RE*V = F— ¥ KVerh— Y KV, (31)
i=1 j=i
and combining equations (30) and (31) leads to
RETD = K AP, (32)

In each step we deal with the direct solution of m symmetric systems, each of which is
of order N/m. The unknowns are the changes in displacements AV that result from the
load vectors R (i = 1,2,..., m). For the total system, we have

Rl {s+1} Fl 0 V1 (s+1)
RZ FZ KZI 0
Rm Fm Kml"'Km,m—l 0 Vm
Ky - Kim e
0 Ky Kpn| | V2
| . . . 33)
0 PR Kmm Vm
or
R(s+1) — F“‘KLV(S+1)-(KB+KU)V(S), (34)

whpre Kp, Ky, and Ky, respectively, are block-diagonal, strictly lower-triangular, and
strictly upper-triangular matrices defined by (33). The changes in displacements are the
solution of the following block-diagonal system :

R1 (s+1) K” AVl (s+1)

i

. : (35)
m K, AV,

m

or

R(s+l) - KDAV(S+1). (36)
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The diagonal blocks K; are symmetric band matrices that can be partitioned into block

tridiagonal matrices of the form

rey 1ot [ k.00 K0y 0 0 AV |
R(Py} K(Py. Q) K(P,,Q) K(P;.0) 0 AV(Q,)
0 K(pj-sz K(PS-QJ) K“’J*Qa} o -
- 0
- 0
0 0
KiPy . OQw) :
R(Py} | 0 0 KiPy.Qu-1)  K(Py.Quyl g AV(Qud |,
where P, and Q, are the lists of field and source points in the ath block. In the above
Kii(Pa, Qﬁ) = Kii(Pﬂa Qaz)'
The triangular decomposition of (37) yields the following pair of equations:
LiR?“s+1) e R§»S+1)
and
U,AVE” 1} — R*(s-% 1)
from which we obtain
AV§5+ - U: IL: 1R§s+ 1)‘
U, and L, are given by
K*(P,,Q;) K(Py,0Q,) 0 0
0 K*(P,,Q;) K(P,,Q3) O 0
0 0
U, = 0 0 0 0
0 0 0
0
0 0 K*(Py,Qum)
and
i | 0 0
K{(Py, 0,)K*(Py, Q)" 1
0 K(P5, Q)K¥(P,. Q)" 1 0 0
L. =
i . O 0
0 0
0 - -0 K(Py.Ou- JK*Py Oyt

(37)

(38)

(39)

(41)

(43)
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where I is the identity matrix and the K}(P,, Q,) are given by

K?;'(Pan Qa) = Kii(Pa’ Qa)——Kii(Pa— 1> Qaz)T . Kﬁ(Pa— 1 Qa— 1)_1 . Kii(Pa— 1> Qa)' (44)
Although U, and L; are sparse block-upper and block-lower triangular matrices, their
inverses are full block-triangular matrices; therefore, it is impractical to use equation (41)
to determine AV$* Y, Instead, we first solve for R¥**V from (39) and then determine
AV from equation (40). The procedure is thus reduced to the solution of two triangular
systems. The solution of (39) is effected through the successive application of the following
recursion formula:

RKP) ™D = R(PY T —Ki(P, 1,0, K¥(P— 1, Q5 ) 1 REP,_ ™D (45)

I1<a<< M

Similarly, from equation (40),

AV(Q)* ™ = K§(P,, Q) [RHP) TV = KiPyy Q1) - AV(Q, 1+ 1)* V] 1< < M,

which, together with equation (29), determines the (s+ 1)th vector iterate.

Convergence criterion

Returning to equations (28) and (29), we can combine the two into a single equation as
follows:

i—-1 m
KV (rh = K.-.-VE”W{E— Y KgVpti— 3 Ki,-V?’—Ki.W’} (47)
j=1 j=i+1
Using previous notation,
(Kp+ oK )VE*D = [(1 —w)Kp— oK VY + oF, (48)

where K, Ky, and Ky are given by equations (33) and (35). Introducing the following
definition for the sth error vector,

&9 =V, (49)
and substituting (49) into (48), we obtain, after some simple manipulation,
g5t = AgW) (50)
where
A=[I+wK;' 'K ] ' [(1-w)—-wKp'K,]. (51)
It follows that by successive substitution in (50) we have
e = A% (52)
This system converges for any & provided
lim 4° = 0. (53)

It i.s well known .that (53) holds if, and only if, the eigenvalues of A4 are of modulus less than
unity. This condition is guaranteed by a theorem of Ostrowski [18], which can be stated as
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follows: Let K = K+ K; + K be an n x n Hermitian matrix, where K, is Hermitian and
positive definite and where K, +wK, is nonsingular for 0 < @ < 2; then, p{A4) < 1 if,
and only if, K is positive definiteand 0 < @ < 2. The spectral radius of 4, p(4), is defined by
pld) = max A, (54)
<isgn
where 4; is an eigenvalue of A. It is obvious that all the conditions of the theorem are
satisfied and therefore (52) is convergent.
From a practical standpoint we need to know when convergence has been achieved.
For this we require a convergence criterion that can be expressed in terms of computed
quantities. From (49) and (50) we have

AVS = (A—Deb™ Y, (5%
or in terms of &
AVS = (4— DA 19, (56)
By virtue of (53), we have
lim AV® = 0. (57)

In view of (36), equation (57) implies
lim R® = 0. (58)

50
In practice it is more convenient to use the following relation in place of (58):

lim |R¥] = 0, (59)

where | R®| is a suitable norm of R®. Of the three commonly known norms defined by
IX N, = (xglf+ x84+ - +IxyH1% g = 1,2, 0, (60)

where || X |, is interpreted as max|x,, the 1-norm is more useful from the point of view of
making a judgment on the amount of average error incurred. Condition (59) becomes

m M
lim [RI§*D = Y 3 [R(PIIT = 0. (61)
570 i=1a=1

In this computational procedure a zero norm is not only unattainable but also unnecessary.
It is sufficient that |R||*" becomes small enough that the errors in displacements and
stresses are insignificant. Normally, the limit value of | R||; is an input quantity that must
be estimated in advance.

Extrapolation procedure
Convergence of the iterative process in certain cases can be substantially improved by

means of the following extrapolation procedure.
Let X,, X5, ..., Xy be the eigenvectors of A corresponding to the eigenvalues 4, > A,,

..., > Ay. An eigenvector expansion of & yields
N

g9 =3 X, (62)

i=1
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Substitution of (56) into (62) gives

N
AVSHD = 3 (L= DX, (63)
i=1
From (63) we have
N A\
Mm”u412urnhﬂq&~ (64)
i=1 1

For sufficiently large s, the terms (4,— 1){(4;/4,), 2 < i < N, become small compared with
(4, — 1). Hence, (64) gives

AVETD = 251, —1)e, X 4, (65)
and for the jth element of AV**") we have, within first order approximation,
AT = A3(dy —Deyx; 1 <j< N (66)

This recursion formula leads to

Av(_s) (Av(r + s)) 1/r
J J
= ¥
{s+ 1} (s)
Av; Av;

=1,2.... (67)

After substituting (67) into (29) and performing simple manipulation, we obtain

r Av(s+l) H 1< P < N
(r+s) _ ,{s+1) (s) j N B
v = Y+ A Z( Fe 3

i=2 = 2,3, ...

Av® (68)
Equation (68) is applied to each element of the displacement vector V = (v, 0,,...,0y).

This extrapolation formula is based on the assumption that the vector AV contains
only one term [equation (65)] rather than N terms as given by equation (64). The validity
of this assumption is dependent on the value of s and on the distribution and relative
magnitudes of the eigenvalues of A4, particularly those with the largest absolute values.
Experience with this formula indicates that it can be successfully applied after only a few
cycles.

Refinement of the solution

The alternating-component iterative method is intended for large systems of order
15,000 or more and of band widths that exceed 1000. For linear systems of this size, round-
off becomes an important consideration, especially if the system is ill-conditioned. (The
general problem of the influence of roundoff error on various aspects of this method is
discussed in [15].) Here we deal with a correction procedure to reduce roundoff errors in
the final solution.

We define r{¥ and 6V{", the rounding error vectors in the computed R® and AV,
respectively, by the relations

1 = R~ RY (69)
and

SV = AV~ AVY), (70)
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where R{¥ and AV are, respectively, the exact (free of roundoff) residual and incremental
displacement vectors of the ith component. Substituting (69) and (70) into (35) we obtain

RO —r® = K AV — K 8V, {71}
from which we have
r = K6V, (72)

We see that the rounding error vectors satisfy the same equations. Therefore, from (41) and
{72) we obtain

SV = U 'L ' (73)
A one-cycle correction will then give
AV = AV 45V (74)

Equation (74} is valid only if no further roundoff errors are introduced in calculating
SV, Since this is impossible, we may resort to an iterative procedure for further improve-
ment. Even then, because we use the computed triangular matrices U; and L,, the process
converges to a nonzero 8V, or r;. Unless the problem is hopelessly ill-conditioned, however,
the correction procedure works and in most cases one or two corrections are sufficient.

Since the iterative process tends to be somewhat self-correcting, this refinement need
be applied only during the last one or two iterations. It should be pointed out that solutions
for AV and 6V follow the same steps and utilize the same equations; furthermore, the
triangular decompositions of the K,’s are carried out prior to the iteration, usually in
singleprecision arithmetic. A one-cycle correction is therefore equivalent to carrying out
one iteration in double precision using the single-precision L; and U;. This correction cycle
is outlined as follows:

1. Compute #® from the matrix equation

i1

M M M
AP = F(P)— Y Y Ky(P,QWV(Q)"— 3 3 KP,QVQ)* V. (75)

i=1 Q=1 j=i@=1
Here 7(P)* differs from R(P)® only in that it is computed in double-precision. If infinite-
precision calculations were performed, 7{P)*® would, by definition, be equal to R(P)*.
2. Using the single-precision L;, compute 7¥(P)® from
FHP)® = L; 'F(P). (76)
3. Using the single-precision U;, compute §V{P)® from
VAP = Uy 'FH(P). (77)

Here 3V(P)* is defined in a manner similar to 7(P)".
4. The refined ith displacement component is then

Ve = VD4 sV, (78)

5. Repeat steps 1 through 4 for all components i = 1,2,....m.

Although this procedure is recommended for the last one or two iterations it can be
applied to all iterations. The arithmetic process involves only inner-product accumulation
that can be performed in double-precision and then stored as single-precision numbers.
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As a result of this truncation process the roundoff error in each number will not exceed
127 where ¢ is the number of binary figures in a single-precision representation. In our
experience this refinement is unnecessary for well-conditioned problems with up to
10,000 unknowns.

EXAMPLES
Example 1

Figure 1 shows the geometry and the finite-element mesh of homogeneous isotropic
solid analyzed for the effect of uniform temperature drop equivalent to 0-01 free contraction
strain. The solid is assumed to be partially bonded to a rigid case, as shown in the figure.
The geometry and material properties chosen closely represent those of a solid rocket
propellant grain subjected to uniform shrinkage in the presence of partial bond failure
between the grain and the case. The cylindrical structure, with a spherical head, contains
a full diametrical slot which extends throughout its length. Symmetry permitted the analysis
of a 90° section only. Although Fig. 1 shows only the head, the analysis extended two
diameters below the head junction. Long-cylinder solution was used as the boundary
condition at the base of the solid.

Stresses in the form of contour plots are given in Figs. 2, 3 and 4. The problem contained
11,100 displacement unknowns and a total bandwidth of 1050. An elastic modulus of
1000 psi and Poisson’s ratio of 0:495 were used. The high Poisson’s ratio caused ill-condi-
tioning because of the large differences between the bulk and shear moduli, but satisfactory
convergence was obtained in 25 cycles.

Example 2

A cantilever beam of rectangular cross section and a span-to-depth ratio of 10 was
analyzed for end shear load. The applied shear stresses were distributed consistently with
the three-dimensional beam theory. Although this example is of no real practical import-
ance, it presents an interesting computational problem. It is slowly convergent ; conse-
quently, it provides a severe test for the extrapolation formula (68). To eliminate the
arbitrariness of the upper limit of the series in equation (68),  is always set equal to s.

SURFACE OF SYMMETRY BONDED SURFACE

FREE SURFACE
% BOND
LINE

FREE SURFACE

F16. 1. Example 1, finite-element mesh.
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FIG. 2. Example I, radia! stresses.

The problem contains 10,530 displacement unknowns, grouped into 3 components, and
has a total bandwidth of 1050. The quantities to be investigated are the following vector
norms: the 1-norm of the residual vector |R|l,, the oo-norm of the displacement vector
IV, ,and the co-norm of the displacement increment vector [[AV ]} . If we consider, for
illustration purposes, that these vector norms are continuous functions of the number of
iteration cycies, we may then plot these quantities as shown in Fig Sa. Ignoring the initial

FiG. 3. Example 1, hoop stresses.
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FiG. 4. Example 1, axial stresses.

10
1
-1 10
R
- >
2
E e I 2
- ~1 <
. 8
d >
—jm“
3 | 1 | ! i m»Z

o i0 20 30 40 50 60
ITERATION CYCLES

F1G. 5a. Example 2, extrapolation and convergence of the iterative solution.

1325
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Hu = 3
10! b “v"oo — ot
—{ 107?
1
—H10? G
= 7 o
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ot f
- E
- 1073
- jo7
- —
l(}l 1 1 L | | ‘0-7

=
~

b 6 8 10 12
ITERATION CYCLES

F1G. 5b. Example 3, extrapolation and convergence of the iterative solution,

apparent divergence as reflected in the curve for ||R||;, the iterative process seems to con-
verge very slowly at a decreasing rate. At the 27th cycle, the displacement increment is of
the order of 1% of the exact solution and about 3% of the computed 27th vector iterate.

By applying the extrapolation formula (68), the computed norms at the end of the first
cycle after extrapolation indicated substantial improvement in the iterative process.
Although the norm [[R||, increased by more than one order of magnitude, the rapid rate of
convergence that followed brought |R]; down to its previous value in two cycles. The
computed ||V27| ., increased by about three times to within 2% of the exact value. At the
end of the 36th cycle, | VC®| , was brought to within 0-5% of the exact solution. The
largest displacement increment ||AV], was close to 0-1 % of the exact solution at the end
of the 36th cycle.

Further improvement of the solution was effected by carrying out cycles 37 through 41
in double precision. As expected, a slight increase in [AV ||, occurred, but it was reduced to
a value about half of that anticipated if double precision were not used. This effect implies
that at this stage a large percentage of JAV| ., is contributed by roundoff.

It should be pointed out that Example 2 is not a typical example. Most practical
problems analyzed to date showed a much faster rate of convergence. An upper limit of
15 to 20 cycles was found to apply to the great majority of problems. This point is demon-
strated in the next example, which is of more practical nature.

Example 3

This example was selected at random from many analyses of several design configura-
tions of a prestressed concrete pressure vessel. The problem contained 7000 displacement
unknowns and a maximum bandwidth of 1050. Figure 5b is a plot of the vector norms of
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interest: |R||;, |AV ]y, and ||V |- Extrapolation was applied at the 8th cycle and single-
precision computation was used throughout. As can be easily seen in the figure, the iterative
process was improved by extrapolation. At the end of the 11th cycle, | R, was decreasing
at a faster rate than || AV |, , but the latter was only one order of magnitude larger than the
limit accuracy of single-precision computations. At that stage, AV, and |R||;, were
judged within acceptable limits and the iterative process was terminated.
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APPENDIX

The field and equilibrium equations for a tetrahedron, namely, the stress—strain relations,
the displacement approximations, the strain-displacement relations, and the equilibrium
equations, are given here.

As stated earlier, in the first section, the appropriate choice of the element displacement
functions that locally approximate the true displacements of the solid in the region occupied
by the element is basic to this method of analysis. A second point, of equal importance, is
the solution of the equilibrium equations and the degree to which it influences the choice
of the primary unknowns.
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The simplest form of displacement approximations is one that is linear in the three
coordinate variables. This simple expansion provides twelve generalized coordinates (four
for each of the three displacement components, u,, u, and u;), which can be related to the
displacements of the element nodes.

Higher-order displacement approximations in the form of second- or third-degree
polynomials can be used. A second-degree polynomial provides ten generalized coordinates
for each displacement component. These ten coordinates can be related, through a coordin-
ate transformation, to the ten displacements defined at ten nodes (four corners, and six
at the centers of the six edges of the tetrahedron).

A third-degree polynomial in the three coordinate variables contains twenty terms.
In this case, several alternate choices of the nodal displacement quantities may be found.
The best choice, of course, will be the one that best utilizes the features of the alternating
component iterative method. As a rule, the best set of displacement coordinates is one
which is defined at a minimum number of nodal points, namely, four for a tetrahedron.

Other investigators found it more convenient to use different shape elements or to use
tetrahedral elements with second-degree polynomial approximations of the displacement
field. The primary unknowns in these cases were taken to be the three displacements at
each node, therefore requiring that additional nodes be defined. However, the alternating-
component iterative method favors the fewer-nodes scheme for the following reasons:
First, the alternating-component method is limited by the number of nodes in the band,
i.e. by the number B/m, where B is the band width of the total stiffness matrix and m is the
number of components. In the m-component scheme, therefore, the maximum band width
can be m/3 times larger than it is in the three-component scheme. This is quite significant
in view of the fact that in three-dimensional problems the band width, not the size of the
system of equations, controls the accuracy and efficiency of the solution. Second, the
machine solution time of the alternating method is proportional to B?/m; therefore, for

z,uy

YsUsy

FiG. Al. Tetrahedral element.
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the same number of unknowns and the same band width, a larger m is highly desirable.
It might be of interest to point out that in Gaussian elimination m = 1, and by the
above argument Gaussian elimination is extremely inefficient for three-dimensional
problems.
Although the alternating-component iterative method as presented here is valid for
m components, 1t has only been applied to the case m = 3. The equations given in this
Appendix are for this case only.

1. Stress—strain relations

The stress—strain relations [equation (5)] for the isotropic solid in Fig. Al are explicitly
given by

614 111000 £y 1
Oy 1 11 0 00 €59 1
G33 111000 £33 1
o[ “*l0 0000 0] [fenf 0
63 000O0CO0O0 £33 0
91 000000 &13 ‘0
2 -1 =t 0 0 07 (g
-1 2 ~1 0 0 0] e
u -1 - 2 0 o0 o 633> Al
0 0 0 3 0 0]]e,
0 0 0 3 0] | &3
6 0 0 3 &3
where N -
ko= sitsni M=t
31-2v) 31+
2. Displacement approximations
The displacement approximations [equation (9)] are given by
1y (x) $(x) 0O 0 by
Uy(x)y = 0 o) O b, (A2)
u3{x) 0 0 dx) by

where

@ix) = [1xyz]. (A3)
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3. Strain-displacement relations

The strain—displacement relations [equation (6)] are explicitly given by

r 3 "’ C~“ 7
811 Zz};; 0 0‘
0
Ea9 0 ‘5‘;’ 0
2
a
23 L
= ty(x) (Ad)
A SN O O EPAR O b
20x, 2 0x
1 ¢ 1 ¢
0 3%, 26,
1 ¢ 1 ¢
; e 0 -
Rl 2ax, 2 8x,
From (A2) and (A4) we have
&= yb, ; (10)
in which
¢, 0 )
0 qu 2
0 0 b, 3
=1, (AS)
2¢7 2 2@: 1
0 3¢5 39,
%(bs 3 0 %¢s 1_
where B
Op(x)
b, = FunEE 1C.
1

4. Coordinate transformation

The coordinate transformation ®,[equation (14)] is obtained by evaluating (A2) at
each node of the tetrahedron. This yields three matrix equations of the form

v, = ¢gb, r=1,23, (A6)
or explicitly,
u b x o noz bi
u x5 b? (A7)
uf 1 X w2 by v
uy L x »n z bt
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and similarly for u, and u;.
Equation (14) then becomes

Uy ¢ 0 O b,
Uz = 0 d’o 0 bz (AS)
vy 0 0 ¢ b,

{Received 3 January 1969)

Aberpakr—/[laeTcs MeETOH pacyeTa HEONHOPOLHABIX YIOPYTMX Tell, B OOLIEM TpeXMEepHOM HalpKeHHOM
cocroaund. Ilony4arorcs, OOBMHBIM CIOCOOOM, YDABHEHHS B HEPEMELISHUAX I PABHOBECHSA, OCHOBAH-~
HBIE HA BAPWALIMOHHOM METONE KOHEYHOro 31meMeHTa, PaccMmatpusaercs GopMa ieMeHTa B BHIE TETpa-
3Apa C JIHHEHHBIMY OPHOIVOKEHUAMY TS NIEpEMEINCHHH .

Inasuo#t ocobeHnocThio Hacroaiielt paborsi ABAAETCS METOJ DEIICHUN YDAaBHEHWNE DABHOBECHS.
3TOT METOM, HA3bIBAEMBIH UTEPALIMOHHEIM METONOM NMEPEMEHHOTO KOMIIOBEHTA, NPHHAUIEKHT K KIacCy
GIOYHBIX HTEPALHOHHBIX CXeM H B OCODEHHOCTH NPUIOAeH A 3824 C HEKOTOPBIMHE 32BHCHMBIMHA HEpeMeH-
HBIMH, KOTOPBIC CYLIECTBYIOT B YOpPYrocTH. Meton naercsa B gocratodHo obuieit dopme, no3sansiouien
WCHOJIB30BATE B 3JIEMEHTAX TETPa’yapa MpuUOMHKEHUS BBILLNX MOPAIKOB 1A NEpeMeieHuil.

OGcyxnaeTcs noapoOHO HTEPALMOHHBIE MeTO/ NEPEMEHHOTO KOMITOHEHTA IO OTHOLIEHHIO K CIEeAyIo
WIHM BONpOcaM: oOWMH MTPOUECC, KPUTEPHH CXONMMOCTH, 00paboTka pelieHds U NPOLeCC YCKOPEHHS
CXOJIHMOCTH.



